Essentials of Soft Matter Science 1st Edition by Françoise Brochard Wyart, Pierre Nassoy, Pierre Henri Puech – Ebook PDF Instant Download/Delivery: 1498773923 ,9781498773928
Full download Essentials of Soft Matter Science 1st Edition after payment
Product details:
ISBN 10: 1498773923
ISBN 13: 9781498773928
Author: Françoise Brochard Wyart, Pierre Nassoy, Pierre Henri Puech
Essentials of Soft Matter Science 1st Edition Table of contents:
Chapter 1 ■ Introduction
1.1 THE BIRTH OF SOFT MATTER
1.1.1 What Do We Mean by Soft Matter?
1.1.2 Style of Research in Soft Matter
1.1.2.1 Simple Experiments
1.1.2.2 Theory
1.1.2.3 Doing Science and Having Fun
References
1.2 OVERVIEW
Chapter 2 ■ Soft Matter
2.1 MESOSCOPIC COMPLEX SYSTEMS
2.1.1 Mesoscale
2.1.2 Disorder
2.1.3 Topology and Geometry
2.1.3.1 Connectivity
2.1.3.2 Self-Similarity
References
2.2 FRAGILE OBJECTS
2.2.1 Weak Interactions
2.2.2 Large Responses
2.2.3 Soft Matter and Biology
References
2.3 VAN DER WAALS FORCES
2.3.1 Classification and Range of van der Waals Interactions
2.3.2 Van der Waals Interactions between Two Media
2.3.2.1 Hamaker Constant
2.3.2.2 Interactions between Two Half-Spaces Separated by Vacuum
2.3.2.3 Interactions between Two Plates Separated by a Dielectric Medium
2.3.2.4 Interaction between Two Identical Spheres
2.3.2.5 Experimental Validation with the Surface Force Apparatus (J. Israëlachvili)
2.3.2.6 Two Identical Media Always Attract Each Other
References
2.4 ELECTROSTATIC INTERACTIONS
2.4.1 Origin of the Surface Charge
2.4.2 Electrostatic Double Layer
2.4.3 Repulsion between Two Charged Plates
2.4.4 DLVO Theory: Stability of Colloidal Suspensions and Soap Films
2.4.4.1 Colloidal Particles
2.4.4.2 Soap Films
References
2.5 MICROMANIPULATION AND MICROFLUIDICS
2.5.1 Force Probes
2.5.1.1 Surface Force Apparatus (SFA)
2.5.1.2 Atomic Force Microscope (AFM)
2.5.1.3 Optical Tweezers
2.5.1.4 Micropipettes and BFP (Biomembrane Force Probe)
2.5.2 Microfluidics – MEMS and Lab-on-a-Chips
References
Chapter 3 ■ Phase Transitions
3.1 PHYSICAL TRANSFORMATIONS OF PURE SUBSTANCES
3.1.1 One-Component Systems
3.1.1.1 Phase Diagrams (P,V,T)
3.1.1.2 Thermodynamics of Phase Separation: Free Enthalpy and Chemical Potential
3.1.1.3 Benjamin Franklin Boiling Water: How to Boil Water with Cold Water
3.1.1.4 Tyndall Experiment on the Fusion of Ice
3.1.2 Binary Mixtures
3.1.3 Analogies between Liquid–Gas Transition and A/B Phase Separation
3.1.3.1 Van der Waals Model of L/G Transitions
3.1.3.2 Flory–Huggins Model of A/B Mixtures
References
3.2 CRITICAL PHENOMENA: FROM FERROMAGNETISM TO LIQUID CRYSTALS
3.2.1 Magnetic Transitions: Order Parameter and Critical Exponents
3.2.2 Definition of Critical Exponents
3.2.3 Large Fluctuations Give Large Response: Fluctuation Dissipation Theorem
3.2.4 Extension to Other Transitions
3.2.4.1 Liquid/Gas Transition
3.2.4.2 Liquid Crystals Transitions
3.2.4.3 Superfluid Helium
3.2.5 Conclusion
References
3.3 MODELS OF PHASE TRANSITION: STATICS
3.3.1 Phenomenological Theories
3.3.1.1 Molecular Field
3.3.1.2 Landau Theory: Second-Order Magnetic Transition
3.3.1.3 Landau–de Gennes Theory: First-Order Isotropic-Nematic Transition
3.3.2 Scaling Laws: Renormalization Theory
3.3.2.1 Breakdown of Mean Field Theory: Ginsburg Criterion
3.3.2.2 Universality and Similarity: Scaling Laws
3.3.2.3 Renormalization Wilson Theory
References
3.4 DYNAMICS OF CRITICAL PHENOMENA: “Z” EXPONENT
3.4.1 Van Hove Approximation
3.4.1.1 Non-Conserved Order Parameter (Magnetization, Nematic Order, etc.)
3.4.1.2 Conserved Order Parameter (Binary Mixture, Liquid–Gas, etc.)
3.4.2 Dynamical Scaling Laws
3.4.2.1 Universality of Critical Exponents
3.4.2.2 Statement of Dynamic Scaling Laws
3.4.2.3 Application of Dynamical Scaling Laws
3.4.3 Linear Response Theory
References
Chapter 4 ■ Interfaces
4.1 COLLOIDAL SYSTEMS: CLASSIFICATION AND FABRICATION
4.1.1 General Features
4.1.2 Classification
4.1.2.1 Stochastic Systems
4.1.2.2 Self-Organized Systems
4.1.2.3 Ternary Systems
4.1.3 Preparation of Divided Systems
4.1.3.1 Mechanical Way
4.1.3.2 Chemical Route
4.2 CAPILLARITY AND SURFACE TENSION
4.2.1 Surface Tension
4.2.1.1 Physical Origin
4.2.1.2 Mechanical Definition of Surface Tension
4.2.1.3 Capillary Forces
4.2.2 Laplace Formula
4.2.2.1 Sphere
4.2.2.2 Generalized Surface
4.2.2.3 Surface with Zero Curvature
4.2.3 Capillary Adhesion
References
4.3 CAPILLARITY AND GRAVITY
4.3.1 Capillary Length
4.3.2 Capillary Rise – Jurin’s Law
4.3.3 Menisci
4.3.4 Shape of Drops
4.3.4.1 Drop on a Solid Substrate
4.3.4.2 Floating Drop
4.4 WETTING
4.4.1 Spreading Parameter S
4.4.2 Partial Wetting: S < 0
4.4.2.1 Ideal Surfaces
4.4.2.2 Hysteresis of the Contact Angle
4.4.3 Complete Wetting: S > 0
4.4.4 From Wetting to Adhesion
References
4.5 PHYSICAL CHEMISTRY OF WETTING – ZISMAN CRITERION AND SURFACE TREATMENT
4.5.1 Wetting Criterion: Sign of the Spreading Parameter
4.5.2 Surface Treatment
4.5.2.1 How to Make a Wettable Surface Non-Wettable
4.5.2.2 How to Make a Non-Wettable Surface Wettable
4.5.3 Surface Characterization – Zisman Critical Tension
4.5.4 Wetting Criterion – Sign of the Hamaker Constant
References
4.6 DYNAMICS OF WETTING
4.6.1 Capillary Velocity
4.6.2 Dynamics: Partial Wetting
4.6.2.1 Motion of the Contact Line
4.6.2.2 Forced Wetting
4.6.2.3 Dynamics of Spreading of a Drop in Partial Wetting (S < 0)
4.6.3 Dynamics: Complete Wetting
4.6.4 Star Wars Application: The Force of the Meniscus
References
4.7 DEWETTING: WITHDRAWAL OF LIQUID FILMS
4.7.1 Definition
4.7.2 Dewetting of Supported Films: Film Stability
4.7.3 Dynamics of Dewetting
4.7.3.1 Viscous Regime
4.7.3.2 Inertial Regime
4.7.4 Application: Life and Death of Viscous Bubbles
4.7.4.1 Viscous Liquid Film: From Molten Polymer to Liquid Glass
4.7.4.2 Life and Death of Viscous Bubbles
4.7.4.3 Exception: Transient Pores in Vesicles and Nuclear Membranes
References
Chapter 5 ■ Liquid Crystals
5.1 GENERALITIES ON LIQUID CRYSTALS
5.1.1 Discovery
5.1.2 Nematics
5.1.3 Cholesterics
5.1.4 Smectics
5.1.5 Thermotropic and Lyotropic Liquid Crystals
5.2 NEMATICS
5.2.1 Elasticity of Nematics: Frank–Oseen Theory
5.2.2 Preparation of Monodomain Samples
5.2.3 Alignment in a Magnetic Field: Fredericks Transition
5.2.3.1 Landau Description of the Fredericks Transition: Statics
5.2.3.2 Dynamics of the Fredericks Transition: Critical Slowing Down
5.2.4 Alignment in an Electric Field: Display Applications
5.2.5 Nematics Textures
References
Chapter 6 ■ Surfactants
6.1 AMPHIPHILIC MOLECULES
6.1.1 Classification of Amphiphilic Molecules
6.1.2 Roles of Surfactants at Interfaces
6.1.3 Self-Assembly and Aggregation in Water
6.1.4 Water/Oil Emulsions and Hydrophilic–Lipophilic Balance
6.2 MONOMOLECULAR FILMS OF AMPHIPHILIC MOLECULES
6.2.1 Insoluble Films
6.2.1.1 Isotherms Π(A)
6.2.1.2 Langmuir–Blodgett (LB) Films
6.2.2 Soluble Films
References
6.3 SOAP FILMS – BUBBLES AND VESICLES
6.3.1 Soap Films, Bubbles, and Foams
6.3.1.1 Films
6.3.1.2 Foams
6.3.1.3 Stability of Soap Films
6.3.1.4 Bursting of Films and Bubbles
6.3.2 Lipid Bilayers: Vesicles and Living Cells
6.3.2.1 Vesicles
6.3.2.2 Transient Pores in Tense Vesicles and Nuclear Membranes
References
Chapter 7 ■ Polymers
7.1 POLYMERS: GIANT MOLECULES
7.1.1 Chemical Synthesis
7.1.1.1 Free Radical Polymerization
7.1.1.2 Anionic or Cationic Polymerization
7.1.1.3 Condensation Polymerization
7.1.2 Polydispersity
7.1.3 Stereochemical Disorder
7.1.4 Glass Transition Temperature
7.1.5 Polymer Classes
7.1.5.1 Copolymers
7.1.5.2 Branched or Star Polymers
7.1.5.3 Polyelectrolytes
7.1.6 Application: Millefeuilles of Polyelectrolytes
7.1.6.1 Formation of Polyelectrolyte Multilayers: Mechanism and Achievements
7.1.6.2 Applications
References
7.2 THE IDEAL FLEXIBLE CHAIN
7.2.1 End-to-End Distance
7.2.2 Gaussian Coil; Entropy Reservoir
7.2.3 Entropic Spring
7.2.3.1 Free Energy Argument
7.2.3.2 Scaling Law Argument
7.2.4 Deviations from Ideal Behavior
7.2.4.1 Semi-Rigid Chain
7.2.4.2 Excluded Volume Effect
7.2.5 Polymer Weight and Size Measurements
7.2.5.1 Molecular Weights Measurement: Osmometry
7.2.5.2 Size Measurement: Viscosity
7.3 THE SWOLLEN CHAIN
7.3.1 Excluded Volume
7.3.2 Flory Calculation
7.3.3 Generalization in Dimension
7.3.4 n = 0 Theorem
7.3.5 Elasticity of a Swollen Chain
References
7.4 POLYMER SOLUTIONS
7.4.1 Three Regimes
7.4.1.1 Dilute Solution
7.4.1.2 Polymer Melt
7.4.1.3 Semi-Dilute Solution
7.4.2 Flory–Huggins Model
7.4.2.1 Polymer–Solvent Solution
7.4.2.2 Mixture of Two Polymers
7.4.2.3 Swollen Gels
7.4.3 Scaling Laws and “Blob” Model
7.4.3.1 Mesh Size ξ
7.4.3.2 Osmotic Pressure Π
7.4.3.3 Radius R(c)
7.4.3.4 Monomer–Monomer Correlation Function g(r)
7.4.4 Phase Transitions in Polymer Solutions
7.4.4.1 Polymer–Solvent Mixture
7.4.4.2 Polymer–Polymer Mixture
7.4.4.3 Summary
References
7.5 POLYMERS AT INTERFACES
7.5.1 Historical Background: From Indian Ink to Polymer Corona
7.5.2 Adsorbed Polymers: The Self-Similar Grid
7.5.2.1 Characterization of the Adsorbed Polymer Layer
7.5.2.2 Description of the Adsorbed Layer: The Self-Similar Grid
7.5.2.3 Colloid Protection: Repulsion between Two Plates
7.5.3 Depletion: Flocculation, Size Exclusion Chromatography
7.5.3.1 Structure of the Depletion Layer
7.5.3.2 Interaction between Colloidal Particles via Depletion Layers
7.5.3.3 Experimental Measurement of the Depletion-Induced Adhesion Energy
7.5.3.4 Size Exclusion Chromatography
7.5.4 Chemical Grafting: Polymer Brush
7.5.4.1 Conformation of Grafted Polymers
7.5.5 Concluding Remarks
References
7.6 DYNAMICS OF POLYMER MELTS: REPTATION
7.6.1 Viscoelasticity
7.6.1.1 Relaxation Time Tr
7.6.1.2 Elastic Modulus E
7.6.1.3 Viscosity η
7.6.2 Reptation Model
7.6.2.1 Reptation Time Tr
7.6.2.2 Viscosity of the Melt
7.6.2.3 Self Diffusion: Dself
7.6.3 Experiments on Self-Diffusion
7.6.4 Visualization of the Reptation Using Giant Polymers
7.6.5 Separation of Charged and Neutral Polymer Chains
References
7.7 DYNAMICS OF POLYMER SOLUTIONS
7.7.1 Single Chain Dynamics
7.7.1.1 Immobile Solvent: Rouse Model
7.7.1.2 Dragged Solvent: Zimm Model
7.7.1.3 Backflow Free Case: Debye Screening
7.7.2 Dynamics of Fluctuations of Polymer Solution: The Cooperative Diffusion Coefficient
7.7.2.1 Sedimentation Coefficient s: Hydrodynamic Screening Length ξ
7.7.2.2 Cooperative Diffusion: Dcoop
7.7.2.3 Dynamics of Gels
7.7.2.4 Self-Diffusion Dself in Semi-Dilute Solutions
7.7.2.5 Dynamical Exponent z
References
Chapter 8 ■ Soft Matter in Everyday Life
8.1 SELF-CLEANING SURFACES: FROM LOTUS LEAF TO SHARK SKIN
8.1.1 Natural Antifouling Mechanisms
8.1.2 Wetting on Rough Surfaces
8.1.3 Self-Cleaning Processes
8.1.4 Engineered Self-Cleaning Surfaces
References
8.2 HYDROGEL PEARLS IN MOLECULAR CUISINE AND CELL BIOLOGY
8.2.1 Spherification and Molecular Cuisine
8.2.2 Formation of an Alginate Hydrogel
8.2.3 Application to Tissue Engineering and Oncology
References
8.3 WALK ON WATER LIKE SPIDERS AND LIZARDS
8.3.1 Resting on Water: When Surface Tension Counteracts Weight
8.3.2 Movement of Light Water Spiders
8.3.3 Movement of Heavy Lizards
References
8.4 WALK UP WALLS LIKE GECKOS
8.4.1 Performances of Geckos and Discarded Mechanisms
8.4.2 Hierarchical Adhesion Structures of Geckos
8.4.3 Measurement of Attachment Force
8.4.4 Biomimetic Gecko
References
8.5 CAPILLARITY AT THE SERVICE OF PLANTS
8.5.1 Sap Rise and Cavitation in Trees
8.5.2 Surface Tension Propulsion of Fungal Spores
References
8.6 DROPLETS IN THE KITCHEN
8.6.1 Evaporation of a Drop
8.6.2 Levitation of a Drop
8.6.3 Self-Propulsion of a Drop
8.6.4 Running Drops
References
8.7 FROM SOAP BUBBLES TO HURRICANES
8.7.1 The Rayleigh–Bénard Instability
8.7.2 Cyclone Formation in a Soap Bubble
8.8 SILLY PUTTY
8.8.1 Historical Background
8.8.2 Phenomenological Model
8.8.3 Microscopic Explanation
References
Chapter 9 ■ Soft Matter in Technology
9.1 ANTI-REFLECTIVE FILMS
9.1.1 Katharine Bodgett’s Discovery
9.1.2 Working Principle of Anti-Reflective Coating
9.1.3 Technological Progress and Natural Inspiration
References
9.2 ARTIFICIAL MUSCLES BASED ON NEMATIC LIQUID CRYSTALS
9.2.1 Generalities on Muscles and Artificial Muscles
9.2.2 A pH Based Chemical Muscle
9.2.3 De Gennes’ Nematic Muscle
9.2.4 Fabrication of Semi-Fast Artificial Muscles
References
9.3 THE MAGIC OF PAINTING
9.3.1 Generalities on Latex Particles
9.3.2 Viscosity of Latex
9.3.3 Formation of a Film of Paint
9.3.4 Paper Coating
References
9.4 IRIDESCENT CLOTHES
9.4.1 What Is a Photonic Crystal?
9.4.2 Photonic Structures in Nature
9.4.3 Iridescent Clothing
References
Chapter 10 ■ Soft Matter in Biology
10.1 ELASTICITY AND COMPACTION OF DNA
10.1.1 How to Measure the Elasticity of Single Polymer Chains?
10.1.2 The Elastic Properties of DNA
10.1.3 The Puzzle of DNA Accommodation in the Nucleus: The Role of Histones
References
10.2 DRUG DELIVERY CARRIERS: LIPOSOMES AND POLYMERSOMES
10.2.1 General Requirements for Targeted Drug Delivery Carriers
10.2.2 Stimuli-Responsive Polymersomes
References
10.3 BIOLOGICAL OR BIOMIMETIC MEMBRANES
10.3.1 Composition of a Biological Membrane
10.3.2 Physical Properties of Lipid Bilayers: Modeling and Experiments
10.3.2.1 Fluidity
10.3.2.2 Mechanical Properties
10.3.2.3 Vesicle Micropipette Aspiration Experiments
10.3.2.4 Permeability
10.3.3 Morphologies of Lipid Vesicles
10.3.3.1 Phase Diagram
10.3.3.2 Multi-Component Vesicles
10.3.3.3 Nanotubular Shapes
References
10.4 CYTOSKELETAL POLYMERS
10.4.1 Different Types of Filaments
10.4.1.1 Actin
10.4.1.2 Microtubules
10.4.1.3 Intermediate Filaments
10.4.2 Rigidity
10.4.2.1 Relationship between Persistence Length and Rigidity
10.4.2.2 Experimental Measurements of the Persistence Length
10.4.3 Dynamics
10.4.3.1 Actin Treadmilling
10.4.3.2 Dynamic Instability of Microtubules
References
10.5 BIOLOGICAL TISSUES AND ACTIVE SOFT MATTER
10.5.1 Multicellular Aggregates as Liquids
10.5.1.1 Surface Tension of Tissues
10.5.1.2 Differential Adhesion Hypothesis
10.5.1.3 An Active Shivering Liquid
10.5.2 Wetting of Multicellular Aggregates
10.5.3 Multicellular Aggregates as Foams
10.5.4 Specific Material Properties of Multicellular Aggregates
References
10.6 ENTANGLED ACTIVE MATTER
10.6.1 Definition
10.6.2 Self-Adhesive Ants
10.6.3 Mechanical Properties of Balls of Ants
10.6.4 Wetting of Balls of Ants
10.6.5 Applications
References
Chapter 11 ■ Conclusion
References
INDEX
People also search for Essentials of Soft Matter Science 1st Edition:
soft matter science
soft matter examples
essentials of materials science and engineering
essentials of modern materials science and engineering
a soft science
Tags: Françoise Brochard Wyart, Pierre Nassoy, Pierre Henri Puech, Essentials, Soft Matter Science